
LV2 Atoms: A Data Model for Real-Time Audio Plugins

David E. Robillard
School of Computer Science, Carleton University

1125 Colonel By Drive
Ottawa ON K1S 5B6

Canada
d@drobilla.net

Abstract
This paper introduces the LV2 Atom extension, a simple
yet powerful data model designed for advanced control
of audio plugins or other real-time applications. At the
most basic level, an atom is a standard header followed
by a sequence of bytes. A standard type model can be
used for representing structured data which is meaning-
ful across projects. Atoms are currently used by sev-
eral projects for various applications including state per-
sistence, time synchronisation, and network-transparent
plugin control. Atoms are intended to form the basis
of future standard protocols to increase the power of
host:plugin, plugin:plugin, and UI:plugin interfaces.

Keywords
LV2, plugin, data, state, protocol

1 Introduction
LV2 is a portable plugin standard for audio systems,
similar in scope to LADSPA, VST, AU, and others.
It defines a C API for code and a format for data
files which collectively describe a plugin. The core
LV2 API is similar in power to LADSPA, but exten-
sions can support more advanced functionality. This
allows the interface to evolve and accommodate the
needs of real software as they arise.

LV2 is supported by many applications, in-
cluding Digital Audio Workstations like Ardour
[Davis and others, 2014Davis and others, 2014], hardware effects proces-
sors like MOD [Ceccolini and Germani, 2013Ceccolini and Germani, 2013], and
signal processing languages like Faust [Gräf, 2013Gräf, 2013].

One key piece of functionality LV2 adds to
LADSPA is the ability to transmit events. This
is most commonly used to communicate via MIDI
[MID, 1983MID, 1983] for playing notes, selecting programs,
etc. MIDI is nearly ubiquitous in musical equip-
ment, but has significant limitations [Moore, 1988Moore, 1988].
Many applications require a more powerful model
to both express and manipulate state. To take a sim-
ple yet common example, MIDI has no standard
way to express “load sample /media/bonk.wav”.
Other protocols like OSC [Wright, 1997Wright, 1997] have at-
tempted to address the limitations of MIDI, but are

still designed around flat commands, which limits
their ability to express structured data.

This paper introduces the LV2 Atom extension,
a simple yet powerful data model designed for ad-
vanced control of LV2 plugins or other real-time ap-
plications. Atoms serve both as a model for repre-
senting state, and a protocol for accessing or ma-
nipulating it. This includes simple values such as
numeric controllers or sample file names, but the
model-based approach allows developers to work
with more sophisticated data as well.

The key distinction between atoms and MIDI
or OSC messages is that atoms are not just com-
mands, but a general data format. This paper aims to
show that building on the foundation of a solid data
model is more elegant and powerful than command-
based protocols like MIDI or OSC. The idea is
conceptually similar to the popular use of JSON
[Crawford, 2006Crawford, 2006] in the web community: define
a simple data model for representing information,
then construct messages within that data model.

However, atoms are not introduced to the exclu-
sion of other protocols. In fact, MIDI messages
are transmitted to and from plugins as a particular
type of atom. At the lowest level, atoms are sim-
ply a binary blob with a standard header. On top of
this, a type model is defined which allows complex
structures to be built from a few standard primitive
and container types. This model has several advan-
tages, including extensibility, support for round-trip
portable serialisation, and natural expression in plu-
gin data files.

There are two aspects to the LV2 atom specifica-
tion: the low-level mechanics (Section 22) define the
binary format of atoms and how they may be used,
while the high-level semantics (Section 33) define a
type model built upon this simple binary format.
Using this model, projects can communicate mean-
ingful structures at a conceptually high level, while
the actual mechanics involved are simply the copy-
ing of small binary blobs. This approach to plugin
control has many applications (Section 44) in cur-
rent projects, which typically use the provided con-

venience APIs for reading and writing atoms (Sec-
tion 55) with ease. Ultimately, atoms are intended to
form the basis of future work (Section 66) designing
standard protocols for advanced plugin control.

2 Mechanics
2.1 Atom Definition
An LV2 atom is a 64-bit aligned chunk of memory
that begins with a 32-bit size and type:

typedef struct {
uint32_t size;
uint32_t type;

} LV2_Atom;

This atom header is immediately followed by the
body which is size bytes long. Atoms are, by defi-
nition, Plain Old Data (POD): contiguous chunks of
memory that can safely be copied bytewise.11 At the
most basic level, this is all there is to atoms.

Types are assigned dynamically and not restricted
to any fixed set. Developers can define new atom
types, though all types are required to be POD. Any
atom can thus be copied or stored, even by an im-
plementation which does not understand its type.
Among other advantages, this makes it possible for
hosts to transmit atoms between plugins without ex-
plicitly supporting each type used. Developers are
free to send complex data between plugins, or be-
tween UIs and plugins, without being held back by
lacking standards or host support. Section 3.33.3 ex-
plains in detail how this decentralised extensibility
is achieved.

Note, however, that atoms are only POD by defi-
nition, not necessarily portable: atoms may contain
architecture-specific data like integers with native
endianness. The atom specification includes a set
of standard types which should be used when per-
sistence or interoperability are important (see Sec-
tion 3.13.1).

2.2 Communication via Ports
Plugins can send or receive atoms via an AtomPort
which (like any LV2 port) is either an input or an
output. An AtomPort is connected directly to an
LV2 Atom (just as a standard LADSPA or LV2 con-
trol port is connected directly to a float).

An AtomPort can be used with any atom type.
Plugins specify which types are supported using the
atom:bufferType property in their data files. Sev-
eral types may be supported by a single port.

1 Type 0 has been reserved for a special reference type, in
case a need for non-POD communication arises in the future.

Input logistics are straightforward: the host con-
nects the input to an atom before calling the plugin’s
process() method.

Outputs are slightly trickier since the plugin must
know how much space is available for writing, but
atom types may have variable size. To resolve
this, the host initialises the size field in the output
buffer to the amount of available space before call-
ing process(). Plugins read this value, then write
a complete atom (including size and type) to the
buffer before returning.

Thus far, atoms have been described without re-
ferring to specific types. An AtomPort can be con-
nected to any value, but since plugins process sig-
nals over a block of time, it is usually more use-
ful for ports to contain many time-stamped atoms,
or events. To achieve this, ports are connected to a
Sequence atom. This is the mechanism commonly
used by LV2 plugins to process streams of sample-
accurate MIDI messages alongside audio. The fol-
lowing section describes the set of standard atom
types, which includes simple types like Int and
containers like Sequence.

3 Semantics
3.1 Atom Types
The structure of the atom type model is
similar to JSON values or ERLANG terms
[Virding et al., 1996Virding et al., 1996]: a few primitive types, and
collections which can be used to build larger
structures. The hierarchy of standard types defined
in the atom extension22 is shown in Figure 11.

Primitives represent a single value, and do not
contain other atoms. The simplest types are prim-
itives with fixed size, like Int. These types have
a corresponding C struct defined in atom.h which
completely describes their binary format, for exam-
ple:

typedef struct {
LV2_Atom atom;
int32_t body;

} LV2_Atom_Int;

A URID is a URI which has been mapped to a
32-bit integer by the host. This facility allows URIs
to be used conceptually, but with the performance of
fixed-size integers (Section 3.33.3 explains the purpose
of URIDs in more detail).

Other primitive types have variable size. String
and Literal represent raw strings and string lit-
erals with a datatype or language, respectively. A
Chunk contains an opaque binary blob of data.

2 There is also a standard type for MIDI messages defined
in the separate LV2 MIDI extension.

Atom

Bool

Chunk

Literal

URID

Number

Double

Float

Int

Long

String

URI

Path

Object

Sequence

Tuple

Vector

Sound

Figure 1: The Atom type hierarchy. Abstract types
are dashed, and collections are grey.

Larger structures can be built from these primi-
tives using collections. The simplest collection type
is Tuple, a series of atoms of any type. An Object
is a set of properties, each with a URID key and a
value of any type. Tuple and Object are analo-
gous to arrays and objects in JSON, or tuples and
dictionaries in Python [van Rossum, 2010van Rossum, 2010], respec-
tively: universal containers that can express almost
any structured data.

The remaining collection types are essentially op-
timisations for audio applications. A Sequence
is, like Tuple, a series of atoms, but each is pre-
ceded with a time stamp.33 A Vector is a series of
fixed-length atoms with the same type and no head-
ers, making the vector body an unadorned C array.
Sound is a descriptive type, identical in format to a
Vector of float, but explicitly representing a sam-
ple of audio.

3 Currently time stamps are always in samples, though other
units are possible.

3.2 Portable Serialisation
In addition to a binary format, each atom type has
a portable serialisation. This allows implementa-
tions (typically hosts) to convert atoms to and from
text for portable storage, network transmission, or
human readability. This format is used to describe
atoms in the following sections, but it is important to
keep in mind that plugins work with atoms in their
native binary form.

Most primitive types are associated with XSD
[W3C, 2004bW3C, 2004b] datatypes which define their textual
format. Table 11 shows this mapping along with an
example string. URID is omitted since the portable
serialisation of a URID is a URI.

Atom XSD Example
Bool boolean true
Chunk base64Binary vu/erQ==
Double double 2.99e8
Float float 0.6180
Int int -42
Long long 4294967296
String string hello
URI anyURI http://lv2plug.in/
Path anyURI /home/drobilla/

Table 1: Text serialisation for primitives.

Containers and Literal have an abstract RDF
[W3C, 2004aW3C, 2004a] serialisation which can technically
be written in many formats. Here, the syntax of
choice is Turtle [Beckett and Berners-Lee, 2011Beckett and Berners-Lee, 2011],
which is used in LV2 data files.

All containers have a portable serialisation, but
this paper focuses on the use of Object. The format
for the other containers is omitted for brevity, but
can be found in the LV2 atom specification.

An object in Turtle begins with its ID, followed
by properties separated with semicolons. A “.” ter-
minates the description. For example, an Object
named eg:control with three properties can be
written as:

eg:control
lv2:minimum 0.0 ;
lv2:maximum 1.0 ;
lv2:default 0.5 .

The ID and properties shown here are abbreviated
URIs, for example, lv2:minimum is actually the
URI http://lv2plug.in/ns/lv2core#minimumhttp://lv2plug.in/ns/lv2core#minimum. A
full Turtle document has prefix directives to define
these precisely.

Numbers are shown unquoted, which is valid but
does not precisely map to Atom types (e.g. 1.0 could
be a Float or a Double). To preserve type in a

http://lv2plug.in/ns/lv2core#minimum

machine serialisation, explicitly typed literals like
"1.0"^^xsd:float are used instead.
3.2.1 Serialisation in Practice
A text-based format for describing atoms facili-
tates discussion, but is also useful in practice. The
Sratom [Robillard, 2012bRobillard, 2012b] library provides a sim-
ple C API for lossless round-trip serialisation of any
atom built from the standard types. This is used in
several different scenarios:

• Saving plugin state in sessions, which is sup-
ported by many hosts.

• Jalv [Robillard, 2012aRobillard, 2012a], a single-plugin host
for Jack [Davis, 2001Davis, 2001], can log all communi-
cation between plugin and UI to the console.
This is particularly useful for debugging.

• Ingen [Robillard, 2014Robillard, 2014], a modular plugin host
and plugin itself, has a UI that communicates
to the engine exclusively via atoms. When
running as a plugin, binary atoms are sent via
AtomPort, but the UI can also run remotely
by communicating over a TCP socket in Tur-
tle. This way, UIs on a different architecture
can control the engine, including those written
in non-C languages like Python or Javascript.

3.3 URIs and Extensibility
Types and properties are identified by URI. The
benefit of URIs is that anyone can define new terms
without needing to worry about clashes or cen-
tralised coordination.

In the context of LV2 atoms, this allows devel-
opers to invent new types and properties without
requiring “approval”. This freedom is particularly
useful while developing new ideas, be they experi-
mental, for internal use only, or intended for even-
tual standardisation.

For example, the previous sections use the
lv2:minimum property, but suppose a plugin devel-
oper additionally needs to describe a “sweet spot”
for controls. There is no standard LV2 property for
this concept, so the developer can define their own
(e.g. http://drobilla.net/ns/sweetSpothttp://drobilla.net/ns/sweetSpot), use it
in their data files, implement host support if nec-
essary, send it between plugins or between plugin
and UI, and so on. The implementation can be
tested and released to the public without any binary
compatibility issues. This flexibility allows LV2 to
evolve to meet real developer needs with minimal
friction.

Note that URIs here are simply serving as global
identifiers, and are not required to actually resolve
on the Internet. However, developers should use
URIs in domains where they could host pages, since

this avoids potential conflicts.44 There is no need to
own an entire domain, for example many plugins
use URIs at popular project hosting sites.

URI schemes other than HTTP may be used, but
are not recommended. One advantage of HTTP is
the ability to have URIs resolve to useful resources,
particularly documentation. All standard LV2 URIs
work this way, so documentation is often just a click
away (follow the above lv2:minimum URI for an
example). The LV2 distribution includes a tool,
lv2specgen, which generates documentation for
types and properties which are defined in Turtle.

4 Applications
4.1 Time
The most common use of objects to communicate
between plugins and hosts is transport synchronisa-
tion. To keep plugins updated with tempo informa-
tion, hosts send an object with properties describing
the current time and tempo, whenever changes oc-
cur.

Most hosts send updates that roughly correspond
to Jack transport information, but with floating point
beats instead of PPQN ticks, and a single floating
point speed instead of only “rolling” or “stopped”.
For example:

[]
a time:Position ;
time:frame 88200 ;
time:speed 0.0 ;
time:bar 1 ;
time:barBeat 0.0 ;
time:beatUnit 4 ;
time:beatsPerBar 4.0 ;
time:beatsPerMinute 120.0 .

4.2 UI Communication
Atoms are also useful for communicating with com-
ponents other than the host. The most common of
these in practice is communication between a plugin
and a custom UI (which, in LV2, happens via ports).
Many UIs need to perform more advanced opera-
tions than is possible via float control ports. For
example, a plugin may include an envelope with an
arbitrary number of points, which a UI could control
with messages like

[]
a eg:EnvelopeSegment ;
eg:endX 1.6 ;
eg:endY 0.5 ;
eg:shape eg:linear .

4 Inventing URIs under other domains without permission
is inappropriate!

http://drobilla.net/ns/sweetSpot

Several projects have made use of such messages
for sophisticated plugin control from UIs. While
host-transparent (and thus automatable) control is
preferable, full control of some plugins requires
messages that are not currently standardised (e.g.
LV2 presently has no concept of envelope segments,
or multi-dimensional controls in general). However,
though the message does not have standardised se-
mantics, it is built from standard atom types so that
hosts can make some sense of it. In particular, hosts
can serialise such messages for controlling a plu-
gin running on a remote computer or embedded de-
vice. This is a good example of how an extensi-
ble model allows developers to achieve their goals
without being held back by lagging standardisation
or host support.

This method of plugin control is relatively new,
and remains an experimental area. In the future,
standardised message types will allow plugins and
UIs to communicate with each other in sophisticated
ways, and hosts to support friendly interfaces and
automation for message-based plugin control.

4.3 Plugin State
LV2 has a state extension which allows plugins to
save and restore state beyond simple control port
values. The state extension does not directly depend
on the atom extension, but has a property-based API
that meshes naturally with Object. Plugins use
host-provided callbacks to save/restore a URID key,
void* value, and URID type.

The fact that plugin state and Object are both
based on properties suggests an elegant approach
to plugin design: a set of properties can serve both
as plugin state and real-time control protocol. This
means plugin developers do not need to design both
a state model and protocol, but simply define a set
of properties that describes their plugin’s state.

For example, the sampler example plugin in-
cluded with LV2 can play any .wav file, and the
sample can be loaded by sending a message like:

[]
a patch:Set ;
patch:property eg:sample ;
patch:value </media/bonk.wav> .

The patch:Set type and properties used here are
defined in the LV2 patch extension, which defines
several message types for getting and setting prop-
erty values.

4.4 Properties
Developers can invent new property URIs and use
them in code without defining anything. However, it

can be useful to define properties for documentation
purposes, and in some cases host support.

Properties are defined in Turtle, so they can be in-
cluded alongside plugin descriptions. For example:

eg:sweetSpot
a rdf:Property ;
rdfs:domain lv2:ControlPort ;
rdfs:range xsd:float ;
rdfs:label "sweet spot" ;
rdfs:comment "The nicest value." .

Defining properties in this machine-readable for-
mat is mainly useful for generating documentation
(all standard LV2 properties are defined in this way),
but this information can be used by hosts as well.

This is still an area of exploration, but for ex-
ample, Jalv will show a file selector in its host-
generated UI for plugins that support properties
with Path values. Setting the property is achieved
by sending a patch:Set message like the example
shown in the previous section.

4.5 Presets and Default State
Plugin descriptions can include a set of default state
properties which should be loaded initially. A pre-
set has a similar structure to a plugin description,
and can also include state. This means that presets
can not only set port values, but restore arbitrary in-
ternal plugin state like loaded samples. The ben-
efit of using standard atom types to describe state
is that developers can write default state in plugin
data files, and hosts can serialise state/presets in the
same format. For example, a preset for a sampler
can specify a sample to load like so:

eg:somePreset
lv2:appliesTo eg:sampler ;
...
state:state [

eg:sample <click.wav>
] .

5 Reading and Writing Atoms
It’s convenient to think of atoms in high level terms,
and describe objects in human-readable Turtle, but
plugins are typically written in C and must work
with binary atoms. For simple primitives types like
Int this is trivial: the appropriate structs can be cre-
ated, copied, and read in the usual way.

Collections are more complex, since their bodies
have variable size and possibly an irregular and/or
nested structure. To make reading collections sim-
pler, iterators for each collection type are provided
in a utility header.

For objects, iteration works, but the typical case
of getting a few property values is cumbersome and
verbose to implement using iteration. For this rea-
son, a simple accessor for object properties is pro-
vided. For example, the following simple object de-
scribes a 2D point:

[]
a eg:Point ;
eg:x 1.0 ;
eg:y 2.0 .

If obj points to this object, and ids.eg x and
ids.eg y are mapped to the appropriate URIs, the
eg:x and eg:y properties can be accessed like so:

const LV2_Atom* x = NULL;
const LV2_Atom* y = NULL;
lv2_atom_object_get(obj,

ids.eg_x, &x,
ids.eg_y, &y,
0);

Here, x and y point to the corresponding values
within obj. There is no dynamic allocation, so this
code is real-time safe and does not require the user
to clean up min and max. If the object does not have
a matching property, the result will be NULL. Note
that this code will continue to work correctly even
if additional properties are added to the point object
in the future.

Writing collections can be trickier, since they
may have irregular or nested structure. For example,
an Object property may have a Tuple or another
Object as a value. Atoms can be constructed in-
place by appending to a buffer, but correctly main-
taining container size fields and padding require-
ments can be a delicate task. To make this sim-
ple, a forge API is provided which allows arbitrarily
complex atoms to be constructed in a target buffer.
The forge has a method for each atom type: for
primitives it simply appends the given value, and
for containers it appends the atom header and re-
turns a frame which must be popped when the ob-
ject is finished. Container sizes are updated auto-
matically as atoms are written using this stack of
frames. The forge is safe to use in real-time code,
and can be used by plugins to write objects directly
to AtomPort outputs in their process() method.
For example, the same 2D point object can be writ-
ten like so:

// Begin an eg:Point object (w/ no URI)
LV2_Atom_Forge_Frame frame;
lv2_atom_forge_object(

forge, &frame, 0, ids.eg_Point);

// eg:x 1.0
lv2_atom_forge_key(forge, ids.eg_x);
lv2_atom_forge_float(forge, 1.0);

// eg:y 2.0
lv2_atom_forge_key(forge, ids.eg_y);
lv2_atom_forge_float(forge, 2.0);

// Finish object
lv2_atom_forge_pop(forge, &frame);

6 Conclusions and Future Work
The LV2 Atom specification defines a simple binary
format for any type of data, and an expressive type
model for representing structured data within that
format. This model has proven effective for repre-
senting plugin state, host to plugin communication
such as tempo synchronisation, and custom control
protocols such as between a plugin and its UI.

This work has layed the foundation for more
powerful control of plugins and other real-time ap-
plications. There are two main areas of future
work: additional convenience APIs and tools to
make working with atoms as simple as possible, and
building more advanced control protocols and other
functionality using the atom model.

For convenience, the existing APIs described in
Section 55 do a relatively good job of making atom
construction and destruction simple in C. However,
some developers have found the forge confusing. It
is difficult to make a fully capable writing API much
simpler given the constraints of C and hard real-
time, but one idea is to make a writing counterpart
to lv2 atom object get() which works only for
non-nested objects. Using C++, a similar, but more
elegant and type-safe interface would be possible,
which could work even for nested containers. LV2
is defined in C, but a significant portion of the devel-
oper community uses C++, so a C++ convenience
wrapper (including idiomatic iterators) would be a
welcome improvement. Other minor improvements
could ease the mechanics, but since several develop-
ers have successfully made use of atoms, focusing
on this area may not be an effective use of time.

The other, more interesting, area for future work
is building on the foundation of atoms to create
more powerful control protocols. One of the biggest
limitations of LV2 is the ControlPort inherited
from LADSPA. Control ports can only hold a sin-

gle float value, and tie the control rate to how of-
ten process() is called. This can be problematic
for certain types of plugins. The lack of a mecha-
nism for adding and removing ports also means that
the set of controls is fixed, which prevents many
possibilities such as the multi-point envelope ex-
ample in Section 4.24.2. Using events for control in-
stead of control ports can solve all of these prob-
lems. Events are much more powerful than a low-
rate control signal, and allow a sample-accurate
stream of changes to be sent to a plugin for an
entire process() call. This will be achieved via
the current AtomPort + Sequence mechanism, but
the structure of events required is yet to be deter-
mined. Object can certainly suffice, but the ben-
efits of extensibility need to be weighed against
the slight overhead for high-rate controls. There
are many possibilities opened up by moving to
events, including ramped/smoothed controls, ges-
tures, precise voice control, and note-specific mod-
ulation/articulation. This is one of the most excit-
ing frontiers of LV2 development; a powerful event-
based control scheme will open up new possibil-
ities beyond what is currently possible with host-
agnostic plugins.

References
David Beckett and Tim Berners-Lee. 2011.
Turtle - Terse RDF Triple Language.
http://www.w3.org/TeamSubmission/turtle/http://www.w3.org/TeamSubmission/turtle/.
W3C Team Submission.

Gianfranco Ceccolini and Leonardo Germani.
2013. MOD - an LV2 host and processor at
your feet. In Linux Audio Conference 2013 Pro-
ceedings, LAC 2013, pages 157–161. Institute of
Electronic Music and Acoustics (IEM).

Douglas Crawford. 2006. The application/json
media type for JavaScript Object Notation
(JSON). http://www.ietf.org/rfc/rfc4627http://www.ietf.org/rfc/rfc4627.
RFC 4627.

Paul Davis et al. 2014. Ardour Digital Audio
Workstation. http://ardour.org/http://ardour.org/.

Paul Davis. 2001. JACK Audio Connection Kit.
http://jackaudio.org/http://jackaudio.org/.

Albert Gräf. 2013. Creating LV2 plugins with
Faust. In Linux Audio Conference 2013 Pro-
ceedings, LAC 2013, pages 145–152. Institute of
Electronic Music and Acoustics (IEM).

1983. Musical Instrument Digital Interface Spec-
ification 1.0. International MIDI Association.
http://www.midi.org/techspecs/http://www.midi.org/techspecs/.

F Richard Moore. 1988. The dysfunctions of
MIDI. Computer Music Journal, 12(1):19–28.

David E. Robillard. 2012a. Jalv.
http://drobilla.net/software/jalv/http://drobilla.net/software/jalv/.

David E. Robillard. 2012b. Sratom.
http://drobilla.net/software/sratom/http://drobilla.net/software/sratom/.

David E. Robillard. 2014. Ingen.

Guido van Rossum. 2010. The Python Lan-
guage Reference. Python Software Foundation.
http://docs.python.org/reference/http://docs.python.org/reference/.

Robert Virding, Claes Wikström, and Mike
Williams. 1996. Concurrent Programming
in ERLANG. Prentice Hall, second edition.
http://www.erlang.org/http://www.erlang.org/.

W3C. 2004a. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/http://www.w3.org/TR/rdf-concepts/. W3C
Recommendation.

W3C. 2004b. XML Schema Part 2: Datatypes.
http://www.w3.org/TR/xmlschema-2/http://www.w3.org/TR/xmlschema-2/. W3C
Recommendation.

Matthew Wright. 1997. Open Sound Control -
a new protocol for communicationg with sound
synthesizers. In Proceedings of the 1997 Interna-
tional Computer Music Conference, pages 101–
104.

http://www.w3.org/TeamSubmission/turtle/
http://www.ietf.org/rfc/rfc4627
http://ardour.org/
http://jackaudio.org/
http://www.midi.org/techspecs/
http://drobilla.net/software/jalv/
http://drobilla.net/software/sratom/
http://docs.python.org/reference/
http://www.erlang.org/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/xmlschema-2/

	Introduction
	Mechanics
	Atom Definition
	Communication via Ports

	Semantics
	Atom Types
	Portable Serialisation
	Serialisation in Practice

	URIs and Extensibility

	Applications
	Time
	UI Communication
	Plugin State
	Properties
	Presets and Default State

	Reading and Writing Atoms
	Conclusions and Future Work

