Real-Time Aggregation of High-Velocity OLAP
Data

David E. Robillard

School of Computer Science
Carleton University

October 2016

Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
@00000 [e]e]e} 0000 0000 00000 [e]e]

Problem Domain

» OLAP data has many dimensions and one or more measures
» Dimensions < “Key”, Measures < “Value”

» Dimensions are hierarcical

All
T ren ([S [D][Tme]
[Caegory | [Cowy | [vewr | [o |
e | [swe | [womw | [e |
o | [v | [Do | [Seeond |

Some hierarchical dimensions for sales from the TPC-DS data set.

Real-Time Aggregation of High-Velocity OLAP Data David E. Robillard

Goals

» Aggregate large fractions of data quickly

» Maximize throughput (high velocity), particularly insertion
» Support concurrent insertion and querying

u]
‘ o)
1
n
it

RN Ge

Related Work

The Hilbert PDC tree is based on two key ancestors:
» PDC-tree!

» Hilbert R-tree?

LFrank Dehne and Hamdireza Zaboli. “Parallel real-time OLAP on

multi-core processors”. In: Proc. 12th IEEE/ACM Int. Symp. on Cluster,
Cloud and Grid Computing. 2012, pp. 588-594.

2|brahim Kamel and Christos Faloutsos. “Hilbert R-tree: An Improved

R-tree Using Fractals”. In: Proc. 20th Int. Conf. on Very Large Data Bases.
1994, pp. 500-509. 1sBN: 1-55860-153-8. o <P = =

E 9DaAe

R-tree

>

Classical data structure for geometric data

v

Nodes have a Minimum Bounding Rectangle key
Key contains the key of all child nodes

v

\{

Typically high-fanout, 1 leaf node per data element
Many variants

v

Il el SN LN el
PDC-tree

v

R-tree-like structure which replaces MBRs with MDSs
Overlap-minimizing split algorithm

v

v

Supernodes

\{

Scales to many more dimensions than R-trees

v

Multi-thread support with minimal locking

Il el SN N e
Hilbert R-tree

v

R-tree that uses Hilbert order for insertion

v

Avoids geometric calculation during insertion

v

Improves insertion throughput considerably

v

Locality preserving properties of Hilbert mapping maintains
good query performance

Hierarchical IDs

IDs are stored in integers
Self-contained ID contains index at all levels

Improves DC-tree scheme by avoiding dictionary lookups

v vV v Vv

IDs can be viewed at a higher level with simple bit masking

| Dimension | Level 1 | Level 2 | Level 3 | Level 4 |

Minimum Describing Subsets

— N W A N

— N W kR NN 3

1

2 3 45 6 7 8
B

MBR [A1, A8],
[B1,B7]

1 2 3 4 5 6 7 8

B

MDS {Al, A2, A6, A7, A8},
{B1,B2,B5,B6,B7}

[m} = =

The Hilbert Curve

» Fractal space-filling curve

» Locality preserving

L
N

The first three iterations of a 2D Hilbert curve construction.

RN Ge

Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
000000 000 @000 0000 00000 [e]e]

Hierarchical Hilbert Mapping

v

Using Hilbert order requires mapping hierarchical 1Ds

v

Mapped IDs are at the bottom level of dimension hierarchies

v

Dimension hierarchies may have uneven distribution

v

Naive solution may not work well since directory node keys are
at higher levels

Real-Time Aggregation of High-Velocity OLAP Data David E. Robillard

Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
000000 000 0000 0000 00000 [e]e]

Mapping Schemes

Dim | Level 1 | Level 2 | Level 3 | Level 4
D 01 1 11 111 1111
10 11 1 1 11
Direct 01 01 0011 0111 1111
10 11 0001 0001 0011
Dimensionless 00 01 0011 0111 1111
00 11 0001 0001 0011

Pad Level 1 | Level 2 | Level 3 | Level 4
Spread 00000 01 11 111 1111
00000 11 01 001 0011
Expanded 00000 10 11 111 1111
00000 11 10 100 1100

Real-Time Aggregation of High-Velocity OLAP Data David E. Robillard

R S -
Compressed Hilbert Mapping

The compressed mapping removes all unused bits and does not
preserve hierarchical structure across dimensions.

Pad Levels
Combpressed 000000 | 1111111111
P 000000

0011111111

u]
‘ o)
1
n
it

RN Ge

e
Hilbert Bits

Dimensionless

Direct

96 128 160
Number of Bits

192 224 256

Number of bits used for various Hilbert mappings.

RN Ge

u]
‘]
it

Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
000000 000 0000 0000 00000 (e}

Node Splitting

» Order of child nodes is fixed due to Hilbert ordering
» PDC-tree split algorithm not applicable
» Hilbert R-tree balanced split may result in high overlap

» Overlap is much more expensive than imbalance for
aggregation

» Solution: choose split index based (primarily) on overlap in
linear time

» Create supernode if no good split index is found

Real-Time Aggregation of High-Velocity OLAP Data David E. Robillard

Split Overlaps

12 T T T T T T T 120 - T 4 T T T T
10] 100
z 2
s 8 1 £ 80
26 | 2
& £y
2] 20
0 4 8 12 16 20 24 28 32 48 12 16 20 24 28 32
Split Index Split Index
An obvious split, but with overlap. A dificult node to split.

Overlap at each split point in observed directory nodes.

Split Frequency

I I e - |

Total Overlap (Millions)

Number of Splits (Thousands)

<

16 32 48 64 80 96 112 128

Split Index 16 32 48 64 80 96 112 128

Split Index

Distribution of split positions Total resulting overlap

Split index frequency and overlap with fixed maximum fanout.

u]
o)

1

n
it
N)
pe)
i)

Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
000000 000 0000 000e 00000 (e}

Supernode Split Frequency

» Supernodes are created if no good split index is found
» Due to multi-threading, if maximum size is reached, force split

;
1.4
3 6
212 2
2 85
© 1 =
£ :
208 4
: £
20.6 g3
© o
Zos 2
=]
=
Z02 1
0 0

16 32 48 64 80 96 112 128 16 32 43 64 80 96 112 128
Split Index Split Index

Distribution of split positions Total resulting overlap

Split index frequency and overlap with supernodes.

Real-Time Aggregation of High-Velocity OLAP Data David E. Robillard

Insertion Performance

0.001

0.0008 - o

0.0006

:

Insert Latency (s)

0.0002

e—e Compressed Hilbert
©--a Direct Hilbert

v---v Expanded Hilbert
+-=+ Dimensionless Hilbert
*+x PDC

+--+ Spread Hilbert

1015

20

25

30 35 40 45 S

Size (Millions)

Insert Latency

—
w
=

Insert Throughput (ops/s) (Thousands)

g

e—e Compressed Hilbert
= --a Direct Hilbert

v---v Expanded Hilbert
+--+ Dimensionless Hilbert
*--x PDC

+---+ Spread Hilbert

w
=3

—_
(=1
—
w

20 25 30 35 40 45
Size (Millions)

Insert Throughput

Performance with a stream of inserts.

50

Query Performance

e—e Compressed Hilbert
12|e--a Direct Hilbert]
v---¥ Expanded Hilbert

e—e Compressed Hilbert
©--a Direct Hilbert

~20 v---v Expanded Hilbert
10| ===+ Dimensionless Hilbert e é =+ Dimensionless Hilbert
2 |[*=PDC "_,—.-' & I > PDC
% g|*~* Spread Hilbert - X Zis . *--* Spread Hilbert
s ES
3 3
7 =10
S =
S g
85

10 15 20 25 30 35 40 45 30 10 15 20 25 30 35 40 45 50
Size (Millions) Size (Millions)
Query Latency Query Throughput

Performance for a stream of queries.

Mixed Performance

Mixed Latency (s)

e—e Compressed Hilbert
& --@ Direct Hilbert

v---v Expanded Hilbert
10| ~--- Dimensionless Hilbert >
-+ PDC L
g|** Spread Hilbert >

—
&)

10 15 20 25 30 35 40 45 50
Size (Millions)

Mixed Latency

Mixed Throughput (ops/s)

e—e Compressed Hilbert
©--a@ Direct Hilbert

v---v Expanded Hilbert
+---+ Dimensionless Hilbert
*-x PDC

*---+ Spread Hilbert

10 15 20 25
Size (Millions)

30 35 40 45 50

Mixed Throughput

Performance for a mixed stream of 50% inserts and 50% queries.

Speedup

4
35
o
£ 3
]
= 2.5
=
£
2 L5 il _.| ®—e Compressed Hilbert
] yr.4 —| =--8 Direct Hilbert
=1 v---v Expanded Hilbert
+-=-+ Dimensionless Hilbert
05 === PDC
*---+ Spread Hilbert

2 4 6 8 10 12 14 16
Threads

Speedup for a mixed stream of inserts and aggregate queries.

Many Dimensions

12 -
0.0057—5 Hilbert PDC-tree T e—o Hilbert PDC-tree
=--m Hilbert R-tree + =--a Hilbert R-tree
0.004| 77 PDC-tree 10 ! v---¥ PDC-tree
: +--+ R-tree ; i +--+ R-tree
= v 2 3 i
ez) z i
Z;‘ 0.003 :,1 g :
% ') v-¥ 3 6 g'l
,' i
£ S i
0.001 H !
2 ,'I:'
E H
- . L _
10020 30 40 506070 010 20 30 40 30 60 70
Number of Dimensions

Number of Dimensions

Insert latency Query latency

Latency as number of dimensions is increased.

n
it
N)
pe)
i)

Introduction Preliminaries Hilbert Mapping Node Splitting Performance
000000 000 0000 0000 00000

Benefits and Use Cases

» The Hilbert PDC-tree is a data structure for real-time
aggregate queries on high-velocity data
» Key benefits:

» Much higher ingestion throughput
» Scales well to many hierarchical dimensions

» Used as the foundation of VOLAP

» A fully distributed system to support the same data model
» Distributes many Hilbert PDC trees across any number of

worker nodes

Conclusion
0

» Server nodes coordinate and provide a similar insertion/query

model to the tree itself

Real-Time Aggregation of High-Velocity OLAP Data

David E. Robillard

Gt GhmtRe Gehe o me @
Thank y0u

i
v

«0>» «Fr «=>» < .

	Introduction
	Preliminaries
	Hilbert Mapping
	Node Splitting
	Performance
	Conclusion

