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Problem Domain

» OLAP data has many dimensions and one or more measures
» Dimensions < “Key”, Measures < “Value”

» Dimensions are hierarcical

All
T ren ([ S [ D ][ Tme ]
[Caegory | [ Cowy | [ vewr | [ o |
e | [ swe | [ womw | [ e |
o | [ v | [ Do | [ Seeond |

Some hierarchical dimensions for sales from the TPC-DS data set.
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Goals

» Aggregate large fractions of data quickly

» Maximize throughput (high velocity), particularly insertion
» Support concurrent insertion and querying
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Related Work

The Hilbert PDC tree is based on two key ancestors:
» PDC-tree!

» Hilbert R-tree?

LFrank Dehne and Hamdireza Zaboli. “Parallel real-time OLAP on
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R-tree

>

Classical data structure for geometric data

v

Nodes have a Minimum Bounding Rectangle key
Key contains the key of all child nodes
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Typically high-fanout, 1 leaf node per data element
Many variants
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PDC-tree

v

R-tree-like structure which replaces MBRs with MDSs
Overlap-minimizing split algorithm

v
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Supernodes

\{

Scales to many more dimensions than R-trees

v

Multi-thread support with minimal locking
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Hilbert R-tree

v

R-tree that uses Hilbert order for insertion

v

Avoids geometric calculation during insertion

v

Improves insertion throughput considerably

v

Locality preserving properties of Hilbert mapping maintains
good query performance



Hierarchical IDs

IDs are stored in integers
Self-contained ID contains index at all levels

Improves DC-tree scheme by avoiding dictionary lookups
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IDs can be viewed at a higher level with simple bit masking

| Dimension | Level 1 | Level 2 | Level 3 | Level 4 |




Minimum Describing Subsets
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MBR [A1, A8],
[B1,B7]

1 2 3 4 5 6 7 8
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MDS {Al, A2, A6, A7, A8},
{B1,B2,B5,B6,B7}
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The Hilbert Curve

» Fractal space-filling curve

» Locality preserving
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The first three iterations of a 2D Hilbert curve construction.

RN Ge



Introduction Preliminaries Hilbert Mapping Node Splitting Performance Conclusion
000000 000 @000 0000 00000 [e]e]

Hierarchical Hilbert Mapping

v

Using Hilbert order requires mapping hierarchical 1Ds

v

Mapped IDs are at the bottom level of dimension hierarchies

v

Dimension hierarchies may have uneven distribution

v

Naive solution may not work well since directory node keys are
at higher levels
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Mapping Schemes

Dim | Level 1 | Level 2 | Level 3 | Level 4
D 01 1 11 111 1111
10 11 1 1 11
Direct 01 01 0011 0111 1111
10 11 0001 0001 0011
Dimensionless 00 01 0011 0111 1111
00 11 0001 0001 0011

Pad Level 1 | Level 2 | Level 3 | Level 4
Spread 00000 01 11 111 1111
00000 11 01 001 0011
Expanded 00000 10 11 111 1111
00000 11 10 100 1100
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Compressed Hilbert Mapping

The compressed mapping removes all unused bits and does not
preserve hierarchical structure across dimensions.

Pad Levels
Combpressed 000000 | 1111111111
P 000000

0011111111
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e
Hilbert Bits

Dimensionless

Direct

96 128 160
Number of Bits

192 224 256

Number of bits used for various Hilbert mappings.
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Node Splitting

» Order of child nodes is fixed due to Hilbert ordering
» PDC-tree split algorithm not applicable
» Hilbert R-tree balanced split may result in high overlap

» Overlap is much more expensive than imbalance for
aggregation

» Solution: choose split index based (primarily) on overlap in
linear time

» Create supernode if no good split index is found
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Split Overlaps
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An obvious split, but with overlap. A dificult node to split.

Overlap at each split point in observed directory nodes.



Split Frequency
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Total Overlap (Millions)

Number of Splits (Thousands)

<

16 32 48 64 80 96 112 128

Split Index 16 32 48 64 80 96 112 128

Split Index

Distribution of split positions Total resulting overlap

Split index frequency and overlap with fixed maximum fanout.
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Supernode Split Frequency

» Supernodes are created if no good split index is found
» Due to multi-threading, if maximum size is reached, force split
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16 32 48 64 80 96 112 128 16 32 43 64 80 96 112 128
Split Index Split Index

Distribution of split positions Total resulting overlap

Split index frequency and overlap with supernodes.
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Insertion Performance
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Query Performance
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Mixed Performance

Mixed Latency (s)
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Performance for a mixed stream of 50% inserts and 50% queries.



Speedup
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Many Dimensions
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Benefits and Use Cases

» The Hilbert PDC-tree is a data structure for real-time
aggregate queries on high-velocity data
» Key benefits:

» Much higher ingestion throughput
» Scales well to many hierarchical dimensions

» Used as the foundation of VOLAP

» A fully distributed system to support the same data model
» Distributes many Hilbert PDC trees across any number of

worker nodes

Conclusion
0

» Server nodes coordinate and provide a similar insertion/query

model to the tree itself
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