Time-Space Optimal String Matching Zvi Galil and Joel Seiferas, 1982

David Robillard

School of Computer Science Carleton University

March 21, 2013

 \equiv

 OQ

イロト イ母ト イミト イミト

 \circ

The String Matching Problem

Find all full instances of a given "pattern" word x in a "text" string y.

イロト イ部 トイモト イモトー OQ 目

David Robillard School of Computer Science Carleton University

Na¨ıve Algorithm

Search for pattern starting at each index of the text.

David Robillard School of Computer Science Carleton University

 \equiv

 $\circledcirc \circledcirc \circledcirc$

イロト イ団ト イモト イモト

Time Complexity

Searching at every index takes time $\mathrm{O}(|x|\cdot |y|)$ in the worst case.

イロト イ団 トイミト イミトー \equiv OQ

David Robillard School of Computer Science Carleton University

Improving the Naïve Algorithm

- \triangleright Can we do better?
- \triangleright Yes, because when checking the *m*th pattern character:
	- \triangleright We know the previous m text characters match
	- \triangleright Therefore, there is no need to check them again on failure

イロト イ母 トイヨ トイヨト \equiv PQQ

David Robillard School of Computer School of Computer Science Carleton University

The Knuth-Morris-Pratt Algorithm

- \triangleright Several methods of eliminating these redundant checks have been proposed
- \triangleright Most well-known is the Knuth-Morris-Pratt algorithm (KMP)
	- \blacktriangleright Uses a precomputed $\mathrm{O}(|x|)$ table
	- \triangleright Table is used to decide how much to backtrack on a failed match
- \triangleright Other approaches:
	- \triangleright O(lg(|x|)) storage
	- \blacktriangleright Reusing pattern for storage
	- \triangleright Constant space, but with catches (random numbers, restrictions, possible error, etc.)

David Robillard School of Computer School of Computer Science Carleton University

Time-Space-Optimal String Matching

The result of this paper[\[1\]](#page-21-0) is an algorithm with:

- \blacktriangleright Linear time
- \triangleright Small constant storage requirements
- \triangleright Minimal requirements: can be implemented on a six-head two-way finite automaton

イロト イ部 トイモト イモトー OQ \mathbb{B}

David Robillard School of Computer Science Carleton University

Periods

Definition (Period)

String z is a period of string w if w is a prefix of $z^m = zzz \dots$. Equivalently, z is a period of w if and only if w is a prefix of zw.

Definition (Basic string)

String z is basic if it is not of the form z^{i} for any integer $i > 1$.

Definition (Prefix period)

String z is a prefix period of w if it is basic and z^k is a prefix of w.

イ何 ト イヨ ト イヨ ト PQQ

David Robillard School of Computer Science Carleton University

[Preliminaries](#page-8-0)

Another View of Periods

For example, $s =$ "abracadabra" has two periods, of length 7 and 10, because for *i*, $s[i] = s[i + 7] = s[i + 10]$.

> イロト イ部 トイモト イモトー \equiv \curvearrowleft a \curvearrowright

David Robillard School of Computer Science Carleton University

Reach

Definition (Reach)

reach_w $(p) = \max\{q \leq |w| : [0, p]_w$ is a period of $[0, q]_w\}$

K ロ > K 何 > K ミ > K ミ > ニ ミ → の Q Q →

David Robillard School of Computer Science Carleton University

[Preliminaries](#page-10-0)

Periodicity

Periodicity Lemma

If a string of length $p_1 + p_2$ has periods of lengths p_1 and p_2 , then it has a period of length $gcd(p_1, p_2)$. [\[3\]](#page-21-1)

> イ何 ト イヨ ト イヨト \leftarrow \Box \rightarrow \equiv Ω

David Robillard School of Computer Science Carleton University

Searching

Several earlier algorithms follow the same general scheme, to scan the text while maintaining:

- p Position in text (increasing, ≥ 0)
- q Length of pattern prefix known to match starting at $p (> 0)$
	- If q reaches $|x|$, then a match has been found.
	- ► Update (p, q) to (p', q') and continue the search.
	- \triangleright The problem of an efficient algorithm is to compute the ideal (p', q') efficiently.

Shift

Earlier work by the authors[\[2\]](#page-21-2) computed (p', q') as

$$
(p', q') = \begin{cases} (p + \text{shift}_x(q), q - \text{shift}_x(q)) & \text{if shift}_x(q) \leq \frac{q}{k} \\ (p + \max(1, \lceil \frac{q}{k} \rceil), 0) & \text{otherwise} \end{cases}
$$

for some fixed integer k . Note that:

- \triangleright The first case is unlikely if k is large
- \triangleright Only the first case uses the shift function
- It would be nice if we could eliminate that case entirely...

マーロー マミーマ ミー Ξ Ω

David Robillard School of Computer School of Computer Science Carleton University

Occurrence of shift_x(q) $\leq \frac{q}{k}$ k

Lemma (1)

If shift_x(q) $\leq \frac{q}{k}$ $\frac{q}{k}$, then $[0, \text{shift}_x(q)]_x$ is a prefix period of x.

Lemma (2)

If $[0, \text{shift}]_x$ is a prefix period of x, then $\mathsf{shift} = \mathsf{shift}_x(q) \leq \frac{q}{k} \Leftrightarrow k \cdot \mathsf{shift} \leq q \leq \mathsf{reach}_x(\mathsf{shift}).$

Theorem (Decomposition)

Each pattern x has a parse $x = uv$ such that v has at most one prefix period and $|u| = O(\text{shift}_{v}(|v|)).$

 \equiv

 Ω

David Robillard School of Computer School of Computer Science Carleton University

イロト イ母 トイヨ トイヨト

Efficient Searching

Given a decomposition $x = uv$, the algorithm searches the text for the suffix v. There are two cases:

- 1. v has no prefix period, and Lem. [1](#page-13-1) guarantees the first case $\left(\textit{shift}_x(q) \leq \frac{q}{k}\right)$ $\frac{q}{k}$) never occurs.
- 2. v has one prefix period of length p_1 , and Lem. [1](#page-13-1) and Lem. [2](#page-13-2) guarantee that the first case occurs only for $kp_{q} \leq q \leq \text{reach}_{\nu}(p_{1}).$

David Robillard School of Computer School of Computer Science Carleton University

Suffix Search

So, when searching for the suffix v , we have

$$
(p', q') = \begin{cases} (p + p_1, q - p_1) & \text{if } k p_q \leq q \leq \text{reach}_v(p_1) \\ (p + \max(1, \lceil \frac{q}{k} \rceil), 0) & \text{otherwise} \end{cases}
$$

with the desired property that a general shift function is not required.

This takes time $O(|v| + |y|)$, since $(k + 1)p + q$ increases in O steps.

> イロト イ押 トイヨ トイヨト OQ \equiv

David Robillard School of Computer School of Computer Science Carleton University

Pattern Search

The algorithm naïvely checks if u precedes every found suffix v . Since v can occur at most $\frac{|y|}{\mathsf{shift}_v(v)}$ times, the total time will be $O(|u|)\frac{|y|}{\text{shift}}$ $\frac{|y|}{\mathsf{shift}_v(v)}$.

> イタン イミン イモン OQ \equiv

David Robillard School of Computer School of Computer Science Carleton University

[Searching](#page-17-0)

Finding a Decomposition

- \triangleright Given a decomposition $x = uv$, we can search quickly
- \triangleright Such a decomposition can be found in linear time
- \triangleright Details ommitted here, but basic idea is to match x with itself

イロト イ母 トイヨ トイヨト \equiv Ω

David Robillard School of Computer Science Carleton University

Performance: $|x| = 16$

 \circ

[Problem](#page-1-0) [Previous Approaches](#page-2-0) [Time-Space-Optimal String Matching](#page-6-0) [Conclusions](#page-18-0)

0000 0000 0000000

[Performance](#page-19-0)

Performance: $|x| = \Theta(\lg |y|)$

[Performance](#page-20-0)

Limitations and Questions

- \triangleright Main limitation is that this is not a "real-time" algorithm (must go backwards in text)
- \blacktriangleright How much time/space is required for a forward-only algorithm?
- \blacktriangleright How few heads are required?

イロト イ部 トイモト イモト \equiv PQQ

David Robillard School of Computer School of Computer Science Carleton University

References

Galil, Z., and Seiferas, J. 螶 Time-space-optimal string matching. Journal of Computer and System Sciences 26, 3 (1983), 280–294.

- **GALIL, Z., AND SEIFERAS, J.** Saving space in fast string-matching. In Foundations of Computer Science, 1977., 18th Annual Symposium on (31 1977-Nov. 2), pp. 179–188.
- 晶

KNUTH, D. E., MORRIS JR, J. H., AND PRATT, V. R. Fast pattern matching in strings. SIAM journal on computing 6, 2 (1977), 323–350.

> マーロー マミーマ ミー Ω

David Robillard School of Computer School of Computer Science Carleton University