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The String Matching Problem

Find all full instances of a given “pattern” word x in a “text”
string y .

Pattern: a b d
Text: a b a b d a a b d

Matches: ↑ ↑
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Näıve Algorithm

Näıve Algorithm

Search for pattern starting at each index of the text.

Pattern: a b d
Text: a b a b d a a b d

Search 0: ? ? X
Search 1: X
Search 2: ? ? X
Search 3: X
Search 4: X
Search 5: ? X
Search 6: ? ? X
Search 7: X
Search 8: X
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Näıve Algorithm

Time Complexity

Searching at every index takes time O
(
|x | · |y |

)
in the worst case.

Pattern: a a a a a a a b
Text: a a a a a a a z

Search 0: ? ? ? ? ? ? ? X
Search 1: ? ? ? ? ? ? X
Search 2: ? ? ? ? ? X
Search 3: ? ? ? ? X
Search 4: ? ? ? X
Search 5: ? ? X
Search 6: ? X
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Näıve Algorithm

Improving the Näıve Algorithm

I Can we do better?
I Yes, because when checking the mth pattern character:

I We know the previous m text characters match
I Therefore, there is no need to check them again on failure
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Knuth-Morris-Pratt

The Knuth-Morris-Pratt Algorithm

I Several methods of eliminating these redundant checks have
been proposed

I Most well-known is the Knuth-Morris-Pratt algorithm (KMP)
I Uses a precomputed O

(
|x |
)

table
I Table is used to decide how much to backtrack on a failed

match

I Other approaches:
I O

(
lg(|x |)

)
storage

I Reusing pattern for storage
I Constant space, but with catches (random numbers,

restrictions, possible error, etc.)
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Time-Space-Optimal String Matching

The result of this paper[1] is an algorithm with:

I Linear time

I Small constant storage requirements

I Minimal requirements: can be implemented on a six-head
two-way finite automaton
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Preliminaries

Periods

Definition (Period)

String z is a period of string w if w is a prefix of zm = zzz . . . .
Equivalently, z is a period of w if and only if w is a prefix of zw.

Definition (Basic string)

String z is basic if it is not of the form z ′i for any integer i > 1.

Definition (Prefix period)

String z is a prefix period of w if it is basic and zk is a prefix of w.
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Preliminaries

Another View of Periods

For example, s =“abracadabra” has two periods, of length 7 and
10, because for i , s[i ] = s[i + 7] = s[i + 10].
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Preliminaries

Reach

Definition (Reach)

reachw (p) = max {q ≤ |w | : [0, p]w is a period of [0, q]w}

David Robillard School of Computer Science Carleton University

Time-Space Optimal String Matching



Problem Previous Approaches Time-Space-Optimal String Matching Conclusions

Preliminaries

Periodicity

Periodicity Lemma

If a string of length p1 + p2 has periods of lengths p1 and p2, then
it has a period of length gcd(p1, p2). [3]
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Searching

Searching

Several earlier algorithms follow the same general scheme, to scan
the text while maintaining:

p Position in text (increasing, ≥ 0)
q Length of pattern prefix known to match starting at p (≥ 0)

I If q reaches |x |, then a match has been found.

I Update (p, q) to (p′, q′) and continue the search.

I The problem of an efficient algorithm is to compute the ideal
(p′, q′) efficiently.
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Searching

Shift

Earlier work by the authors[2] computed (p′, q′) as

(p′, q′) =

{
(p + shiftx(q), q − shiftx(q)) if shiftx(q) ≤ q

k

(p + max(1, dqk e), 0) otherwise

for some fixed integer k . Note that:

I The first case is unlikely if k is large

I Only the first case uses the shift function

I It would be nice if we could eliminate that case entirely...
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Searching

Occurrence of shiftx(q) ≤ q
k

Lemma (1)

If shiftx(q) ≤ q
k , then [0, shiftx(q)]x is a prefix period of x.

Lemma (2)

If [0, shift]x is a prefix period of x, then
shift = shiftx(q) ≤ q

k ⇔ k · shift ≤ q ≤ reachx(shift).

Theorem (Decomposition)

Each pattern x has a parse x = uv such that v has at most one
prefix period and |u| = O(shiftv (|v |)).
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Searching

Efficient Searching

Given a decomposition x = uv , the algorithm searches the text for
the suffix v . There are two cases:

1. v has no prefix period, and Lem. 1 guarantees the first case
(shiftx(q) ≤ q

k ) never occurs.

2. v has one prefix period of length p1, and Lem. 1 and Lem. 2
guarantee that the first case occurs only for
kpq ≤ q ≤ reachv (p1).
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Searching

Suffix Search

So, when searching for the suffix v , we have

(p′, q′) =

{
(p + p1, q − p1) if kpq ≤ q ≤ reachv (p1)

(p + max(1, dqk e), 0) otherwise

with the desired property that a general shift function is not
required.
This takes time O(|v |+ |y |), since (k + 1)p + q increases in O
steps.
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Searching

Pattern Search

The algorithm näıvely checks if u precedes every found suffix v .
Since v can occur at most |y |

shiftv (v) times, the total time will be

O(|u|) |y |
shiftv (v) .
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Searching

Finding a Decomposition

I Given a decomposition x = uv ,we can search quickly

I Such a decomposition can be found in linear time

I Details ommitted here, but basic idea is to match x with itself
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Performance

Performance: |x | = 16
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Performance

Performance: |x | = Θ(lg |y |)
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Performance

Limitations and Questions

I Main limitation is that this is not a “real-time” algorithm
(must go backwards in text)

I How much time/space is required for a forward-only
algorithm?

I How few heads are required?
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Performance
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